ENISS comments on DS 507

		COMMENTS BY REVIEWER	2		RESOLUTION			
Reviewer: Country/Or	ENISS ganization: H	ENISS	Page 1 of 7 Date: 07/10/2019	ENISS				
Comment No.	Para/Line No.	Proposed new text	Reason	Ac- cept ed	Accepted, but mod- ified as follows	Rejected	Reason for modifi- cation/rejection	
1	4.16	In location where a fault zone com- prises multiple fault segments, each fault segment should be taken into account both dependently and inde- pendently. The possibility of the multiple fault segments rupturing simultaneously during an earth- quake, that might go up to total fault rupture length, should be evaluated to determine the conservative esti- mate and associated uncertainties of the potential maximum magnitude.	Consistency between maximum magnitudes estimates and tec- tonic context, mainly for in- traplate domains where large in- herited structures now face low deformation velocities			X	The next sen- tence in this para is the same in- tention.	
2	4.16	Available information about the seismological and geological history of the rupture of a fault or structure (such as segmentation, fault length, and fault width) should be used to estimate the maximum rupture di- mensions and/or displacements. This information together with mag- nitude-area scaling relationships should be used to evaluate the poten- tial maximum magnitude of the seis- mogenic structure under considera- tion. Other data that may be used to	This section should be taken carefully: the consideration of scenarios including total fault rupture should not be a require- ment, but a possibility when the deformation rate and tectonic settings of the region are such that this possibility could be re- alistic. This should be taken into account particularly in cases of stable continental regions.		Accepted with minor modifica- tion			

	construct a rheological profile should also be considered in this es- timation, such as data on heat flow, crustal thickness, and strain rate.			
5 5.10	In active tectonic regions, relatively abundant empirical data exists and GMPEs should be developed pri- marily from that data or from data from similar seismotectonic set- tings. In areas with lower rates of earthquake activity, where data is much less abundant (such as stable continental regions), alternative em- pirical or semi-empirical methods have been developed for deriving GMPEs. Examples of these methods include the hybrid empirical method and hybrid reference empirical method, both of which rely on utiliz- ing a GMPE developed for regions where abundant data exist (a host re- gion). In the hybrid empirical method, simple parametric seismo- logical models of the physical prop- erties of the seismic source and dim- inution of seismic energy with dis- tance are used to adjust the host GMPE to conditions consistent with the site or region of interest (the tar- get conditions). For the hybrid refer- ence empirical method, adjust- ments6 should be developed based on residuals between the empirical	The term "hybrid" is generally used (concerning ground mo- tion) to identify motions ob- tained by mixing simulations techniques with observations. In this case we understand that this term is used to identify hot- to-target adjustment ap- proaches. However, these pro- cedures for adjusting the ground motion predicted by a GMPE to the target area ground motion characteristics require the avail- ability of sufficient observa- tions in the target area in order to avoid an artificial growth of the uncertainties. Such observa- tions, however, are rare (at least for earthquakes in the magni- tude-distance scenarios of con- cerns for the safety of nuclear installations) when stable re- gions are considered as target area.	clarifica- tion	In the EU, it is rare, but this guide needs to cover entire Member States. In high seismic- ity area, such as Japan, it is al- ready practica- ble.

		data in the target region and the GMPE model from the host region. This approach requires an adequate number of empirical data in the tar- get region to perform the necessary residual analysis for the develop- ment of the adjustments.		
4	5.12	The aleatory variability should be considered for the GMPEs and de- rived from the residuals between ob- served and predicted motions. The residuals may depend on magnitude, distance, or ground motion level it- self. At the selected specific site, de- tailed site response analysis or the residual investigation using vibra- tory ground motions recorded at the site should be conducted in order to reduce the aleatory variability.	Similarly to the comment pro- vided for § 5.10: the assessment of the aleatory variability based on residuals between observed and predicted motions requires to dispose of a sufficient amount of data in the target area, which is generally not the case for sites located in stable regions.	See above
5	5.14	Caution should be exercised in com- paring the selected GMPEs with rec- orded ground motions from small, locally recorded earthquakes. The use of such recordings (e.g. in scal- ing the selected attenuation relation- ships) should be justified by show- ing that their inferred magnitudes and distance scaling properties are appropriate for earthquakes within the ranges of magnitude and dis- tance that are of greatest concern re- garding the seismic safety of the nuclear installation. Nevertheless, best efforts should be performed to	§5.14 states "magnitudes and distance scaling properties are appropriate for earthquakes within the ranges of magnitude and distance that are of greatest concern regarding the seismic safety of the nuclear installa- tion". Similarly to the previous item: This is most rare in stable regions	See above

		reflect those observed data in the se- lection of the GMPEs				
-			~	**		
6	7.5.a)	If it shows evidence of past move-	Consistency between consider-	Х		
		ment (such as significant defor-	ation of Pliocene - Holocene			
		mations and/or dislocations) within	periods in cratonic regions and			
		such a period that it is reasonable to	a reduce time frame for regions			
		conclude that further movements at	with highest tectonic activity			
		or near the surface might occur over	(but not as high as in active re-			
		the life of the nuclear site or instal-	gions for which Upper Pleisto-			
		lation. In highly active areas, where	cene – Holocene period is re-			
		both seismic and geological data	tained)			
		consistently reveal short earthquake				
		recurrence intervals, evidence of				
		past movements in the period of Up-				
		per Pleistocene to Holocene (i.e. the				
		present) may be appropriate for the				
		assessment of capable faults. In less				
		active areas, it is likely that much				
		longer periods (e.g. Pliocene to Hol-				
		ocene, i.e. the present) are appropri-				
		ate. In areas where the observed ac-				
		tivity is between these two rates (i.e.				
		not as highly active				
		as plate boundaries and not as stable				
		as cratonic zones), the length of the				
		period to be considered should be				
		chosen on conservative basis (i.e.				
		quaternary with possible extension				
		to Pliocene depending on areas tec-				
		tonic activity level). One way to cal-				
		ibrate the time frame for fault capa-				
		bility may be to check if the site is in				
		the deformed area of major regional				
		faults. Longer time frames should be				

r	1					[
		used when the site is far away from				
		the potentially deformed areas of				
		these regional structures.				
7	7.5b	If the capability of a fault cannot be			clarifica-	The distance
		assessed as indicated above because	for a fault to be "structurally		tion	may depend on
		it is not possible to obtain reliable	linked with a known capable			the region and it
		geochronological data by any avail-	fault".			is matter of each
		able method, the fault should be	Is there any distance to consider			Member States.
		considered capable if it could be	to link the studied fault and the			But for the con-
		structurally linked with a known ca-	"known capable fault"?			servative con-
		pable fault (i.e. if a structural rela-				sideration, the
		tionship with a known capable fault				link should be
		has been demonstrated such that the				carefully consid-
		movement of one fault may cause				ered.
		movement of the other				
		at or near the surface).				
8	7.5.c)	If the capability of a fault cannot be	Such definition appears too vast		Х	This is the states
		assessed as described in (a) and (b)	for intraplate domains where			of practice of the
		because it is not possible to obtain	capable faults are rare and re-			Member States.
		the relevant reliable data by any	cent markers of deformation			See Para 8.4 in
		available method, the fault should be	(i.e. Pleistocene to present) of-			SSG-9.
		considered capable if the potential	ten absent.			
		maximum magnitude associated				
		with the seismogenic structure, as				
		determined in Section 4, is suffi-				
		ciently large and at such a depth (i.e.				
		sufficiently shallow) that it is rea-				
		sonable to conclude that, in the cur-				
		rent tectonic setting of the site area,				
		movement at or near the surface				
		could occur.				
L						

Seismic Hazards in Site Evaluation for Nuclear Installations, STEP 11 (DS507)

		COMMENTS BY REVIEWER			RESOLUTION				
	M-L Järviner		Page of						
Country/Or	<u> </u>	3	te: 2nd November 2019		1	1	1		
Comment No.	Para/Line No.	Proposed new text	Reason	Accepted	Accepted, but modi- fied as follows	Rejected	Reason for modifica- tion/rejection		
1.	5.10, foot- note 6	Footnote 6 on hybride methods for GMPE determinations mentions "MS regulation". A reference would be helpful.	The topic is of general in- terest, but it is not gener- ally known what the MS regulation is and where it can be found.			X	In order to explain the method, this footnote has been added. As it can be recognized, this is the Japanese method and the reference is in Japanese. In fu- ture, when many records will be ac- cumulated, this will be applicable to the other site. Strong motion observation at the site is encour- aged for this fact as well. Add (available only in Japanese ref)		
2.	5.11	The meaning of terms ergodic and non-ergodic in this context should be explained or a reference should be added.	The terms are not very generally known even among seismologists or geotechnical engineers not specializing in this field.			X	It is quite usually used in seismologi- cal societies. And definitions can be found on the www.		

3.	3.20, 3.26, Definitions	Definitions include the term "site area border". Exactly this form was not found in the draft guide. Paras 3.20 and 3.26 include expressions "border of the site area" and "bound- ary of the prospective selected site area". The consistency of wording should be checked.		X	Unified to 'boundary'		
4.	3.32 (a)	Boreholes should, where prac- ticable, be drilled down to seismic bedrock. Boreholes should also be drilled deep enough to confirm that no cavities or karstic features are underlying the foundation of nuclear installations, such as in limestone areas.	Regarding the depth of boreholes, only detection of possible cavities and karstic features is men- tioned as a criterion. Other criteria should also be mentioned. However, this may lead to exten- sive and possibly contro- versial additions which can be considered in the next update.	X	Accepted with minor modifica- tion.		
5.	ANNEX- TYPICAL OUTPUT OF PROB- ABILIS- TIC SEISMIC HAZARD ANAL- YSES TA- BLE A-1 Uniform	Mean and fractile uniform hazard response spectra should be reported in tabular as well as graphic format. Unless otherwise specified in the work plan, the uniform hazard response spectra should be reported for annual frequencies of exceedance of 10^{-2} , 10^{-3} , 10^{-4} , 10^{-5} -and, 10^{-6} and 10^{-7} and for fractile levels of 0.05, 0.16, 0.50, 0.84 and 0.95.	Draft Safety Guide DS490, Seismic Design of Nuclear Installation, mentions annual fre- quency of exceedance of 10 ⁻⁷ . Perhaps it could be considered here also.			X	After fragility is considered, the number decreases to order 10 ⁻⁷ . But at the seismic hazards evaluation stage, there are normally very large uncer- tainties in going much below 10 ⁻⁶ . (this only works if the plant fragility curve goes to unity at around 10 ⁻⁶)

6. ANNEX- TYPICAL and distances should be reported for oUTPUT ABILIS- TIC The mean and modal magnitudes and distances should be reported for each ground motion parameter and level for which the M-D deaggre- ABILIS- TIC From an engineering point of view, area from 10 Hz to PGA should be reported also, e.g. 25 Hz. The frequencies of inter- est depend on the site conditions (hard rock / SEISMIC HAZARD Ported for response spectral frequen- cies of e.g. 1, 2.5, 5, 10, 25 Hz, and peak ground acceleration. From an engineering point of view, area from 10 Hz to PGA should be reported also, e.g. 25 Hz. The frequencies of inter- est depend on the site conditions (hard rock / soft soil / etc.). X Due to innovation of the ground mo- tion observation, higher frequency signal can be available than SSG-9 stage. 9GA was added in ac- cordance with comment in Step 8 but not a frequency between 10 Hz and PGA is should be re- quency between 10 Hz and PGA is should be re- SSG-9 stage.		hazard re-					
spectraspectraFrom an engineering point of view, area from 10 Hz to PGA should be reported also, e.g. 25 Hz. The frequencies of inter- signal can be available than SEISMIC HAZARD NAL- Cies of e.g. 1, 2.5, 5, 10, 25 Hz, and PEA ground acceleration.From an engineering point of view, area from 10 Hz to PGA should be reported also, e.g. 25 Hz. The frequencies of inter- est depend on the site conditions (hard rock / SSG-9 stage.Due to innovation of the ground mo- tion observation, higher frequency signal can be available than SSG-9 stage.6.ANNEX- TIC HAZARD Ported for response spectral frequen- cies of e.g. 1, 2.5, 5, 10, 25 Hz, and Peak ground acceleration.From an engineering point of view, area from 10 Hz to PGA should be reported also, e.g. 25 Hz. The frequencies of inter- est depend on the site conditions (hard rock / SSG-9 stage.XDue to innovation of the ground mo- tion observation, higher frequency signal can be available than SSG-9 stage.X							
6.ANNEX- TYPICAL OUTPUT OUTPUT each ground motion parameter and OF PROB- ABILIS- TICThe mean and modal magnitudes and distances should be reported for each ground motion parameter and IO HZ to PGA should be reported also, e.g. 25 Hz. The frequencies of inter- est depend on the site conditions (hard rock / SEISMIC HAZARD ANAL- Cies of e.g. 1, 2.5, 5, 10, 25 Hz, and Ported for response spectral frequen- ANAL- SEISTA- BLE A-1 Mean and modal magnitude and dis- tanceThe mean and modal magnitudes reported also, e.g. 25 Hz. The frequencies of inter- est depend on the site conditions (hard rock / soft soil / etc.).Due to innovation of the ground mo- tion observation, higher frequency signal can be available than SSG-9 stage.6.ANNEX- TICported for response spectral frequen- peak ground acceleration.From an engineering point of view, area from 10 Hz to PGA should be reported also, e.g. 25 Hz. The frequencies of inter- est depend on the site conditions (hard rock / soft soil / etc.).Due to innovation of the ground mo- tion observation, higher frequency signal can be available than SSG-9 stage.6.ANAL- peak ground acceleration.PGA was added in ac- cordance with comment in Step 8 but not a freaquency between 10 Hz and PGA. However, we think that some fre- quency between 10 HzSSG-9 stage.		-					
ported.	6.	ANNEX- TYPICAL OUTPUT OF PROB- ABILIS- TIC SEISMIC HAZARD ANAL- YSES TA- BLE A-1 Mean and modal magnitude and dis-	and distances should be reported for each ground motion parameter and level for which the M–D deaggre- gated hazard results are given. Un- less otherwise specified in the work plan, these results should be re- ported for response spectral frequen- cies of e.g. 1, 2.5, 5, 10, 25 Hz, and	 point of view, area from 10 Hz to PGA should be reported also, e.g. 25 Hz. The frequencies of inter- est depend on the site conditions (hard rock / soft soil / etc.). PGA was added in ac- cordance with comment in Step 8 but not a freaquency between 10 Hz and PGA. However, we think that some fre- quency between 10 Hz and PGA is should be re- 	X	of the ground mo- tion observation, higher frequency signal can be available than	

Date: 3	COMMENTS BY REVIEWER Country/Organization: FRANCE Date: 30/09/2019 pages						RESOLUTION
Com- ment No.	Para/ Line No.	Proposed new text	Reason	Ac- cept ed	Accepted, but modified as fol- lows	Rejected	Reason for modification/rejection

2.	5.21 In the kinematic simulation approach, the slip velocity function and rupture time distribution on the finite fault should be defined. Most of the The model parameters mentioned above cannot be known in advance for future ruptures on a specific fault. Hence the simulations should represent these parameters values properties as random variables with appropriate correlation among them amongst some of the variables. The specific characteristics of the seismotectonic setting where the site is located should also be given due consider-	Proposed modification to be consistent with new pro- posed 5.20 and keep a simi- lar description in 5.21 and 5.22	X	Accepted with minor modifica- tion		
5.21	ation. A sufficient number of simula- tions should be conducted to provide a stable estimate of the median ground motions at the site of interest as well as the variability about that median. Kine- matic models typically utilize a stochas- tic approach to model the high fre- quency portion of the spectrum as Green's function. However, the aleatory variability should be at least comparable to that associated with empirical GMPEs, since a potential weakness of simulations is the inability to capture the full variability of ground motions.	The last sentence formula- tion leaves with the impres- sion that simulations varia- bility is useless. This is a bit confusing and definitive. I guess that the intended warning was to pay atten- tion to the fact that a lower variability one could get from simulations may lead to reduced hazard.				

2				v	A		
3.		6.9 A probabilistic approach should be		Х	Accepted with		
		used when the safety of the nuclear in-			minor modifica-		
		stallation against earthquake loading			tion		
		needs to be demonstrated with explicit					
		consideration of the likelihood of occur-					
		rence of the relevant seismic hazards					
		(e.g. vibratory ground motion level).					
		Probabilistic approaches consider the					
		rates of recurrence of events in each of					
		the seismic sources for all magnitudes					
		from a bounded minimum magnitude,	The proposed modification				
	<u> </u>	up to the estimated potential maximum					
	6.9	magnitude along with their estimated	clarifies the range of magni-				
		maximum size. In these cases, the an-	tude distribution.				
		nual frequency of exceedance of differ-					
		ent levels of the relevant hazard parame-					
		ters (e.g. the peak ground acceleration)					
		should be estimated to define an appro-					
		priate design basis and/or to perform a					
		seismic probabilistic safety assessment.					
		In subsequent analyses these results may					
		be used to demonstrate the nature of					
		cliff edge effects and to ensure that per-					
		formance targets are met.					
L		iormanee targets are met.				l	<u> </u>

4.	6.17	6.17 To be meaningful, deterministic- seismic hazard assessments are appro- priate only for regions where enough ap- propriate data exists for key parameters. If this is not the case, the level of statis- tical uncertainty implied for each param- eter can lead to the use of excessively- conservative bounding values that is- likely in turn to lead to grossly excessive predictions of seismic hazard levels. The main difference between deterministic- and probabilistic assessments is that the former does not model parameter uncer- tainty explicitly; this is an especially im- portant and sometimes dominant consid- eration in seismic hazard assessments for regions of low seismicity.	This paragraph incorporates mis- leading statements about differ- ences between PSHA and DSHA: - To be meaningful, both PSHA and DSHA need data. - Main difference between DSHA and PSHA is the annual rate of oc- currence of the events. For DSHA, scenarios considered have the probability of 1, for PSHA it de- pends on the magnitude => associ- ating a frequency to the ground motion. - DSHA is able to model explicitly uncertainties on key parameters (regarding catalogs, magnitudes, distances, GMPES, site, and so on – same as for PSHA), leading to a dis- tribution of hazard, but no fre- quency. - In low seismicity regions, the PSHA is also challenging, due to the lack of appropriate data for key parameters for PSHA (with the additional need for evaluating seis- micity rates). This paragraph does not bring fair information. The data is needed for both approaches. Uncertainty can be model explicitly in both ap- proaches.		clarifica- tion	The comment makes the case that PSHA and DSHA are different in some respects but equivalent in many others. It obscures the point that deterministic analyses handle uncer- tainty in a fundamentally different way to probabilistic analyses. Deterministic analyses uses qualitative approach because they effectively use informed guesswork to judge the range of uncertainty for a parameter. The range nor- mally has to be truncated to remove "outliers" because the entire range is treated in effect as equally probable (a uni- form Probability density function). However make some changes to the para. As below: "To be meaningful, Ddeterministic seismic hazard anal- yses are appropriate only for regions where sufficient ap- propriate data exist for key parameters. If this is not the case, the level of statistical uncertainty implied for each parameter can lead to the use of excessively conservative bounding values, which is likely in turn to lead to grossly excessive predictions of seismic hazard levels. The main difference between deterministic analysis and probabilistic analysis is that the former does not employ quantitative statistical methods to explicitly model uncertainties in the parameters; this is an especially important and sometimes dominant consideration in seismic hazard assessments for regions of low seismicity.

	1	1			
5.	7.3 Fault displacement is the relative movement of the two sides of a fault at or near the surface, measured in any chosen direction, generated by an earth- quake. Primary or principal Principal displacement faulting occurs along a main fault rupture plane (or planes) that is the location of release of the energy. Secondary or distributed fault displace- ment faulting is the rupture that occurs off near-the principal displacement fault- ing, possibly on splays of the main fault or antithetic faults. In other words, fault displacements could be associated with the causative (i.e. seismogenic) fault or	Proposed modification of ter- minology to reflect the defini- tions adopted in the scientific community, as well as in inter- national guidelines (e.g. ANSI/ANS-2.30-2015) : - "Principal" should be "Pri- mary or Principal" for con- sistency. - This paragraph is about dis- placement. Faulting introduces confusion with a hierarchical classification of faults. Thus "faulting" is replaced by "fault displacement" throughout the 7.3. - "Near" term suggests a quan- titative estimation that should be mentioned (how much is 'near'?). We suggest to use	X	Accepted with minor modifica- tion	
	could occur co-seismically on secondary neighboring faults. It should be noted that tectonic relative displacements on discrete fractures associated with folds (synclines and anticlines) are also in- cluded in the term 'fault displacement'. Fault creep, when demonstrated as such, is considered as a slowly progressing geological hazard that may affect the safety of nuclear installations but is not seismically induced and therefore not considered in this Safety Guide.	"off", in order to stay "binary" (on/off or principal/secondary) - "secondary faults" is too re- strictive in the case secondary displacement occurs along a major structure. Neighboring fault (or other faults, neighbor- ing structures) is more general, including cases where the caus- ative fault is a minor fault and the secondary displacement is seen on a major fault. - Add 'discrete fractures' to the fold-related displacements; otherwise it is confusing to read fold-related relative dis- placement and fault displace- ment			

6.			Large faults with significant paleo-earth-		clarifi-	As discussed in NUSSC46, exclusionary attribute is dis-
			quake history are often the host for 'princi-			tinct between these two paras. Please see slide 23 of
			pal' surface rupture with large offsets. How-		cation	https://www-ns.iaea.org/commit-
			ever, there are examples in the world with			
		7.11 During the selection and evaluation	significant rupture appearing on previously unknown or on structures known to be sec-			tees/files/NUSSC/1886/Item2.8-46NUSSC-DS507-Y.Fu-
		stages of a proposed new site for a nu-	ondary-order faults, even hosting the 'princi-			kushima.pdf
			pal' surface rupture (eG. M7+ El Mayor			
		clear installation, if reliable evidence is	Cucapah in 2010 or M6 Napa earthquake in			If there are not enough evidences or data to differentiate
		collected demonstrating the existence of	2014).			e
		a capable fault with potential for seis-	Based on this knowledge, it seems hazardous			between primary and secondary faults, a conservative ap-
		mogenic (i.e. primary) fault displace	to guarantee that a 'secondary' tectonic fea-			proach should be applied and the fault should be identified
			ture will remain in this category.			and characterized as the capable fault. Respecting also the
		ment within the site vicinity, or within	The formulation of 7.11 and 7.12 leaves			Japanese MS comment, Para 7.11 was amended to avoid
		the site area, and its effects cannot be	the impression that there is confusion be-			the risk.
		compensated by proven design/engi-	tween primary (major)/secondary (minor) fault and primary/secondary surface rupture.			the fisk.
		neering protective measures, this issue	Fault displacement hazard is actually as-			
		should be treated as an exclusionary at-	sessed based on different equations/predic-			
			tions for primary and secondary surface rup-			
		tribute (see para. 3.8 of IAEA Safety	tures during earthquakes, which can occur			
		Standards Series No. SSG-35, Site Sur-	on any kind of fault. The distinct characteris-			
		vey and Site Selection for Nuclear In-	tics of primary and secondary ruptures and			
		stallations [9]) and an alternative site	their dependencies are implemented in			
			PFDHA for existing sites. If it is kept, 7.12			
		should be considered.	would better refer to a capable fault with potential for distributed (i.e. secondary)			
	7.11		surface displacement instead of "secondary"			
	7.12	7.12 If during the selection and evalua	fault".			
		tion stages of a proposed new site for a	Since the concept of secondary fault is			
		nuclear installation, reliable evidence is	qualitative, it mostly depends on the exist-			
		collected demonstrating the existence	ence of a larger fault nearby. Therefore, the			
			application of section 7.12 could lead fre-			
		within the site vicinity area of secondary	quently to some difficult decision situations, where a capable fault crossing the site vicin-			
		fault belonging to a seismogenic capable	ity would be left to a discretionary decision			
		fault located outside the site vicinity,	because a larger fault would be known in the			
		this issue may be treated as a discretion-	neighborhood.			
		ary attribute (see para. 3.8 of SSG 35-	The application of 7.12 has also the fol-			
			lowing consequence: if the new site area is			
		[9]). However, if reliable evidence	crossed by a capable fault with potential for			
		shows that this secondary fault is traced-	distributed displacement (or a secondary			
		or extended to the site area, and its ef-	fault in the original formulation), moving the site only a few hundreds of meters (depend-			
		fects cannot be compensated by proven-	ing on the site area dimensions) so that this			
		design/engineering protective measures,	same structure lies out of the site area but			
			within the site vicinity will be enough to			
		this issue should be treated also as an-	avoid the exclusionary attribute and consider			
		exclusionary attribute and an alternative-	the issue can treated as a discretionary at-			
		site should be considered.	tribute.			
			For a new site, it seems reasonable to			
			avoid any capable fault within the site vicin- ity (moving the site a few kilometers). As a			
			consequence, it is proposed to remove the			
			7.12. The proposed formulation for 7.11 en-			
			- P - P			

	compasses all the capable faults (either re- sponsible for primary or secondary displace- ment) within the vicinity of the site and the site area to be regarded as a reason to find		
ļ	an alternative site.		

7.		7.16 In the probabilistic fault displace-		Х	A againta d with	
/.				Λ	Accepted with	
		ment hazard analysis, the following two			minor modifica-	
		types of possible fault displacements			tion	
		should be considered with careful and				
		appropriate treatment of the involved				
		uncertainties (both epistemic and alea-				
		tory):				
		57				
		(a) Primary displacement, typically in-				
		the form of direct seismogenic fault rup				
		ture; Primary or Principal displacement				
		which occurs along a main plane (or				
		planes) that is (or are) the locus of re-				
		lease of seismic energy.				
		(b) Secondary displacement (also called-	Proposed modification of			
		indirect or subsidiary displacement),	•			
		typically associated with induced move-	terminology to reflect the			
		ment along pre existing slip planes (e.g.	definitions adopted in the			
	7.17	a triggered slip on an existing fault or a-	scientific community, as well			
		bedding fault plane from an earthquake	as in international guidelines			
		that occurred on another-fault). Second-	•			
		ary or distributed displacement which	(e.g. ANSI/ANS-2.30-2015)			
		occurs in the vicinity of the principal				
		displacement, possibly on splays of the				
		main fault or antithetic faults. In some				
		cases, triggered slip has been considered				
		to be a form of secondary or distributed				
		displacement (a triggered slip is a re-				
		mote triggering of slip along a fault				
		from a distant earthquake).				
		The fault displacement is generally char-				
		acterized as a three-dimensional dis-				
		placement vector that should be resolved				
		into components of slip along the fault				
		trace and along the fault dip, with the re-				
		sulting amplitude equal to the total eval-				
		uated slip (for a given annual frequency				

	of exceedance and for a given fractile of hazard).				
8. 7.19	The range of annual frequencies of exceedance, for which the amount of displacements is to be calculated, should be compatible with the safety principles of the nuclear installation. From the hazard curve thus obtained, the annual frequency of exceedance corresponding to the level required for safety evaluation purposes should be adopted to establish the corresponding surface rupture evaluation basis to conduct the safety evaluation of the installation. The level of annual frequency of exceedance should be defined considering the plant event sequences that could result in high radiation doses or in a large radioactive release have to be practically eliminated (see SSR 2/1(Rev. 1) [9], para. 2.11).	The link between hazard and practical elimination concept is not so straightforward and SSR- 2/1 (or SSR-3 and 4) do not pro- vide any requirement that allow to establish directly such a rec- ommendation in DS 507.	X	Accepted with following modi- fication: (right end col- umn)	"The range of annual frequencies of exceedance; for which fault displacements are the amount of displacements is to be-calculated should be compatible with the safety signifi- cance of the nuclear installation. This will enable a fault displacement hazard curve to be constructed over the frequency range of relevance to nuclear safety for the in- stallation. The response of the installation to these dis- placements might be evaluated to determine its fragility to probabilistic fault displacement hazard, i.e. the prob- ability of failure as a function of fault displacement. From both the hazard curve and the probability of fail- ure function, the frequency of failure due to fault dis- placement hazard can in principle be calculated, and this could be compared to relevant regulatory safety goals, such as large early release frequency (LERF), that apply to the installation. On the basis of this information, a judgement could be made as to whether the installation meets the intent of Requirement 20 and para. 5.27 of SSR-2/1 [9] in terms of 'practical elimination'. See also From the hazard curve obtained in this way, the annual fre- quency of exceedance for safety evaluation purposes should be adopted to establish the corresponding surface rupture evaluation basis to conduct the safety evaluation of the in- stallation. This level of the annual frequency of exceedance should be defined considering that event sequences at the installation that could result in high radiation doses or in a large radioactive release have to be 'practically eliminated' (see SSR 2/1 (Rev. 1) [9], para. 2.11; SSR-3 [10], para. 6.8; and SSR-4 [11], para. 6.7).

Draft Safety Guide

DS507 "Seismic Hazards in Site Evaluation for Nuclear Installations", Step 11 Version from 30 August 2019

			COMMENTS BY REVIEWER			RESOLUT	TION	
	Reviewer: Fed (BMU) (with a Country/Organ	comments of						
Rele- vanz	Comment No.	Para/Line No.	Proposed new text	Reason	Accepted	Accepted, but modified as follows	Rejected	Reason for modifi- cation/rejection
3	1.	3.32 (a), line 9	[] Boreholes should be drilled deep enough to confirm that no cavities or karstic features are underlying the foundation of nuclear installations,s such as in limestone areas.	editorial	Х			
2	2.	3.52	The seismic monitoring network sys- tem should be installed for new sites from the very beginning of the site evaluation stage. For existing sites, for which such systems were not originally deployed, the seismic monitoring network system should be installed from the beginning of the seismic safety re-evaluation pro- gramme. These systems should be operated during the whole lifetime of the nuclear installation to acquire more detailed information on path ef- fects, empirical Green's functions, ground motion prediction equations, and site response. In addition, micro-	tailed information on path effects, empirical Green's functions, ground motion predic- tion equations, site re- sponses" and "micro- tremor/ambient-noise measurement" are pur- poses of the high sensi-			X	Two types of sensor are intro- duced and high sensitivity sensor is usually aim to detect micro event locations. Whereas the strong motion sensor is used to record the vibra- tory ground mo- tions that is the target to evaluate in the hazard as- sessment. The recorded motion consists of the all

	İ		COMMENTS BY REVIEWER			RESOLUT	ION	
	Reviewer: Fee (BMU) (with Country/Orga	comments of		ation and Nuclear Safety Pages: 3 Date: 02.10.2019				
Rele- vanz	Comment No.	Para/Line No.	Proposed new text	Reason	Accepted	Accepted, but modified as follows	Rejected	Reason for modifi- cation/rejection
			tremor/ambient-noise measurement should be deployed if necessary to evaluate site response.	erometers, the text deal- ing with these issues should be transferred to Paragraph 3.52.				source, path and site effect of the target. Comple- mentary, the am- bient noise meas- urement will be used to evaluate site effect.
2	3.	3.54	If the selected instrumentation for the seismic monitoring network system cannot adequately record strong mo- tions, several strong motion accel- erometers should be collocated with the high sensitivity seismometers to acquire more detailed information on path effects, empirical Green's func- tions, ground motion prediction equations, and site responses. In ad- dition, micro-tremor/ambient-noise measurement should be deployed if necessary to evaluate site response.	As Paragraph 3.54 is dedicated to strong mo- tion accelerometers, the text dealing with issues of the seismic monitor- ing network system(see Comment to Para. 3.52) should be transfered to Paragraph 3.52.			X	See above. Rec- ords, which ob- served by the high sensitivity seismometers, are mainly used to identify the hypocentres of seismic sources. As well as get- ting representa- tive time histo- ries of strong ground motion to underpin de- sign time histo- ries, or enabling better interpre- tation of macro- seismic inten- sity data.

			COMMENTS BY REVIEWER		Ì	RESOLUT	TION	
			y for the Environment, Nature Conserva					
	(BMU) (with			Pages: 3				
	Country/Orga		Č.	Date: 02.10.2019				
Rele- vanz	Comment No.	Para/Line No.	Proposed new text	Reason	Accepted	Accepted, but modified as follows	Rejected	Reason for modifi- cation/rejection
	4.	6.2, line 3	[] The vibratory ground motion hazard may <u>should</u> be evaluated by using probabilistic and/ or , <u>depending on</u> <u>national regulatory requirements</u> , <u>also</u> deterministic methods of seis- mic hazard analysis. The choice of the approach depends on the national regulatory requirements and the end user specifications, which should be documented in the project work plan (see Section 10).	Understanding that dif- ferences in the regula- tory approach exist the twofold approach should be still advo- cated. It was also one of the insights gained from the Fukushima nuclear accidents that infor- mation on the exceed- ance probability of ex- ternal hazards provides important input for risk assessments. As the value of doing both, probabilistic and deter- ministic hazard assess- ments, has been recog- nized by IAEA, the two- fold approach should be advocated in this guide. In Europe, it is already state of the art to use both methods as docu- mented in the WENRA Safety Reference Levels for Existing Reactors, Paragraph T3.2.			X	This is the inter- national docu- mentation but not the EU regional documentation. Any approaches should have po- tential. But both applicants and regulatory au- thorities should take their respon- sibility.

Japan NUSSC Comments on DS507, "Seismic Hazards in Site Evaluation for Nuclear Installations"

	•	COMMENTS BY REVIEWER member Page1. of pan / Nuclear Regulation Authority (N			RESC	DLUTION	
Comment No.	Para/Line No.	Proposed new text	Accepted	Accepted, but modi- fied as follows	Rejected	Reason for modifica- tion/rejection	
1.	7.11./4 7.12./5	We would like to highlight our particular lands' comments #4 and #5, which mented in November 2018, to resolv tween SSR-1 and DS507.	are intended, as we com-				
		The proposed amendments on para.7 sidered helpful to ensure consistency b					

			COMMENTS BY REVIEWER			RESOLUT	TION	
	Reviewer: Nat Country/Organ		0	Pages: Date: 04.10.2019				
	Comment No.	Para/Line No.	Proposed new text	Reason	Accepted	Accepted, but modified as follows	Rejected	Reason for modifi- cation/rejection
1	1.	6.7	Consideration should be given to the possibility that ground motion hazard may be influenced by the fault rupture driven by anthropogenic activity, e.g. reservoir loading, fluid injection, fluid withdrawal, or other such phenomena. Specialist guidance should be con- sulted to deal with such situations.	The guidance provided in this document is based on the basic founding principle or accepted norms for con- ducting a seismic hazard analysis, namely that the occurrence of seismic events is random in space and time. To be consistent with this prin- ciple, it is a practice in seismic hazard analysis to screen out or exclude human-induced seis- micity (i.e. seismicity driven by anthropogenic activity) deliberately. Thus, including human- induced seismicity goes beyond the scope of this guidance document.			X	The seismic events triggered by human activi- ties are out of scope for this guide. This sen- tence is straight forward from SSG-9. Anyway, occur- rence of seismic events is not re- stricted in ran- dom. For exam- ple, the time pre- dictable model is also in the scope. (Same for the Comment 2)

Draft Safety Guide DS507 "Seismic Hazards in Site Evaluation for Nuclear Installations"

	1		COMMENTS BY REVIEWER		Ì	RESOLUT	TION	
	Reviewer: Na Country/Orga			Pages: Date: 04.10.2019				
	Comment No.	Para/Line No.	Proposed new text	Reason	Accepted	Accepted, but modified as follows	Rejected	Reason for modifi- cation/rejection
2	2.	7.9	Consideration should be given to the possibility that faults that have not shown recent near surface movement might be reactivated by anthropogenic activity, e.g. reservoir loading, fluid injection, fluid withdrawal, or other such phenomena. Specialist guidance should be consulted to deal with such situations.	The guidance provided in this document is based on the basic founding principle or accepted norms for con- ducting a seismic hazard analysis, namely that the occurrence of seismic events is random in space and time. To be consistent with this prin- ciple, it is a practice in seismic hazard analysis to screen out or exclude human-induced seis- micity (i.e. seismicity driven by anthropogenic activity) deliberately. Thus, including human- induced seismicity goes beyond the scope of this guidance document.				

COMMENTS BY REVIEWER					RESOLUTION			
		r Regulatory Commission	ota: 0 at 22 2010					
Country/Or Comment No.	Para/Line No.	USA/Nuclear Regulatory Commission Da Proposed new text	ate: Oct 22 2019 Reason	Accepted	Accepted, but mod- ified as follows	Rejected	Reason for modifica- tion/rejection	
1.	3.32 (a):	(e.g. Poisson's ratio, Young's modulus, shear modulus reduction or non-linear proper- ties, dynamic damping properties, density, rel- ative density, shear strength and consolidation characteristics, grain size distribution, P-wave and S-wave velocities).	Dynamic damping properties (hyster- etic damping, and damping ratio as function of shear strain) are important parameters in ground motion and site response deter- mination.	X				
2.	6.22	Add a requirement either after (3) or after (7): (#) If the site strata are not horizontally uniform (e.g. valley, layers with inclination angle greater than 20 degrees), 2-D or 3-D effects in site res- ponse should be examined.	Irregular site strata will greatly affect site seismic re- sponse analysis re- sults, therefore 1-D model may not be able to provide real- istic site response estimate.	X	More generic term: 'heterogeneous' than 2-D or 3-D is used			
3.								
4.								
5.								

Comments on IAEA Draft Safety Guide Seismic Hazards in Site Evaluation for Nuclear Installations Step 7 (DS507)