Reviewer:		COMN	MENTS BY REVIEWER Page.	1 October 2021	RESOLUTION			
Country/OI Comment No.	rganization: Country Reviewer Comment No.	Para/Line No.	Proposed new text	01 October 2021 Reason	Accepted	Accepted, but modified as follows	Rejected	Reason for modification/ rejection
1.	France 1	Contents	part 3.14 – 3.17 line : page 14 or 15 not 145; « references » line : page 80 not 800 « contributors to review » part : page 83 not 833	pagination error	X			
2.	Korea 1 (KINS)	Contents	The Regulatory Research Reactors $(3.2-3.6)$ 112 The Use of $(3.14-3.17)$ 145 References 80θ Contributors to 833	Correction of page number	X			
3.	Germany 1- EPReSC (BMU/GR S)	General	Postulatedinitiatingevents6.22.6.22.Requirementsforidentifyingpostulatedinitiatingeventsforresearchreactorsareestablishedin Requirement18 of SSR-3 [1].	—	X			Will be resolved at editorial stage.

				32, 35 and 64.			
4.	Germany 1- NUSSC	General	Specification of a research reactor with a low potential hazard should be consistent within the entire document. Please use consistently the complete formulation like " For a research reactor, critical or subcritical <u>assembly</u> with a low potential hazard such as a critical or subcritical <u>assembly</u> "	Referring only to critical or subcritical assemblies may be misleading	X		
5.	Germany 2- NUSSC	General	As formulated in para 1.9 in scope of this Guide, it is about "the use of graded approach in the application of the safety requirements", to be in line with SSR-3. Please use this formulation all over the text, further variations of wording confuse and are misleading	Please use this formulation all over the text, further variations of wording, as for example "this requirement can be applied/cannot be applied using a graded approach" confuse and are misleading.		X The following text formulation is used "the way that this requirement is applied is the same irrespective of the potential hazard of the facility Or "the way this requirement is applied cannot be graded"	consistency h SSR-3.
Section 1							
6.	Germany 3- NUSSC	1.6	The Safety Guide provides recommendations on the use of a graded approach in the application of the safety	We like to emphasize the importance that the objective of grading is to balance the stringency of regulatory	X		

			requirements established in	requirements with the			[]
			SSR-3 [1] for research	associated risk without			
			reactors, including critical	compromising safety.			
			assemblies and subcritical				
			assemblies, without				
			compromising safety.				
7.	Germany 4-	1.10	This Safety Guide is	Compare with para 1.8 of	Х		
	NUSSC		primarily intended for use	SSR-3. The scope of the Safety			
			for heterogeneous, thermal	Guide should be the same as of			
			spectrum research reactors	the Safety Requirement.			
			having a power rating of up				
			to several tens of				
			megawatts. For research				
			reactors of higher power,				
			specialized reactors (e.g.				
			homogeneous reactors, fast				
			spectrum reactors) and				
			reactors having specialized				
			facilities (e.g. hot or cold				
			neutron sources, high				
			pressure and high				
			temperature loops),				
			additional guidance may be				
			needed. Homogeneous				
			reactors and accelerator				
			driven systems are out of				
			the scope of this				
			publication.				
0	Cormony 1	1.9	This Safety Guide	According to the Glossary and		V	The second is in 1'
8.	Germany 1- WASSC	1.7	5			Х	The scope is in line
			considers the application of	GSR Part 6 decommissioning			with the approved
	(BMU/GR		a graded approach	is part of the lifetime. "the			DPP. Such detail is
	S-BASE)		throughout the lifetime of a	terms siting, design,			not needed here.
			research reactor without	construction, commissioning,			
			decommissioning (site	operation and			
			evaluation, design,	decommissioning are normally			

Section 2			construction, commissioning, operation and preparation for decommissioning), including utilization and experiments that are specific features of research reactor operation.	used to delineate the six major stages of the lifetime of an authorized facility."		
9.	Germany 5- NUSSC	2.7	The overall method to determine the graded approach may be <u>qualitative</u> , quantitative, qualitative or a combination of both. The graded approach presented in this Safety Guide has two steps. First is the qualitative categorization of the facility in accordance with its potential hazard (see para. 2.16 of SSR-3 [1]). Second is consideration of a specific safety requirement from SSR-3 [1], and the quantitative and/or qualitative analysis of any activities and/or SSCs associated with that requirement. The use of a graded approach by the operating organization shall	Please put "qualitative" first, as this is the order later in text As in para 6.28 of SSR-4 and in line with para 3.15 of SF-1	X The overall method to determine the graded approach may be <u>qualitative</u> , quantitative, qualitative or a combination of both and the quantitative and/or qualitative analysis of any activities and/or SSCs associated with that requirement.	The additional text is covered in para 2.1 and 2.5 among others of this safety guide and is in line with the SSR-3 para 6.18.

10.	Germany 6-	2.9 Line 20	be justified in accordance with the categorization of the facility, which shall be subject to review by the regulatory body.	Clarification in order to bring	X		
10.	NUSSC		On the basis of these characteristics, together with the application of expert judgement and consideration of any other factors that might affect the potential radiological hazard, the research reactor should be categorized as a high, medium or low potential hazard.	in line with para. 2.16 of SSR- 3 and para 2.7 of current document	Δ		
11.	Germany 7- NUSSC	2.9 A New issue	A useful tool for the categorization of the facility in accordance with its potential hazard is an assignment of a research reactor to a cooling category as following: (a) After shutdown from full power operation the reliability of active cooling systems must be ensured to remove the residual heat from the reactor core to an ultimate heat sink. In the worst-case scenario cladding failure and melting of fuel element	From our practical experience we know that determining the radiological hazard potential is the most demanding and crucial task in applying a graded approach. We suggest to add an assignment of a research reactor to a cooling category as a useful practical tool for the categorization of the facility. We believe that Member States would benefit from more guidance on this topic.		X	Graded approach in accordance with potential hazards is described. Among others cooling is one factor to consider in deciding application of graded approach to certain requirements. Similar description to apply graded approach to cooling system is

			shall be considered.(b) After shut-down from full power operation the reliability of passive cooling systems must be ensured to remove the residual heat from the reactor core to an ultimate heat sink. In the worst-case scenario cladding failure and melting of fuel element shall be considered.(c) After shut-down from full power operation no cooling systems are necessary for residual heat removal from the reactor core to an ultimate heat sink. In the worst-case scenario, no cladding failure or melting of fuel				covered in para 6.3 (b) of this Safety Guide.
12.	Germany 8- NUSSC	Introduce a new para (2.10 A)	element occurs. 2.10. Following the categorization of the facility in step 1, an analysis should be performed to determine the appropriate manner for meeting a specific safety requirement using a graded approach. A safety requirement may address a	Please introduce a new para. at the beginning of Step 2: Analysis and Application of a Graded Approach. This include a very useful information, which is missing in Chapter 2. Compare also with para. 2.8. of SSG-22.	X		

specific SSC, or an element of the management system. The safety significance of	
The safety significance of	
each SSC or management	
system element (including	
SSCs and management	
system elements related to	
experiments) can be	
determined through the step	
2 analysis. Requirement 16	
of SSR-3 [1] states that	
"All items important to	
safety for a research reactor	
facility shall be identified	
and shall be classified on	
the basis of their safety	
function and their safety	
significance".	
2.10 A. In this step, the	
level of detail at which	
requirements are applied to	
activities and/or SSCs is	
determined, in accordance	
with the importance to	
safety of the activity or	
SSC. The level of detail	
should cover, for example,	
the rigour of the analysis to	
be conducted, the frequency	
of activities such as testing	
and preventive	
maintenance, the stringency	
of required approvals and	
the degree of oversight of	
activities.	

	~					1	-	1
13.	Germany 9-	2.11	The safety function and	The application of an	Х			
	NUSSC		safety significance and	appropriate methodology for				
			potential risks of SSCs	safety classification (e.g.				
			should be determined by	following the proposed				
			conducting a safety	methodology of SSG-30) will				
			assessment (see DS510A	directly lead to an appropriate				
			[10]) by analyzing the	safety class commensurate				
			consequences of a failure of	with the safety significance of				
			the intended safety function	the SSCs. The safety				
			to be performed by the	significance is based on the				
			considered SSCs. When	consequences in case of a				
			identifying SSCs that are	failure of the intended safety				
			important to safety,	functions and additional				
			classifying them by their	factors (such as frequency,				
			importance to safety, and	time before countermeasures				
			then considering a graded	are due, etc.) taken into				
			approach in their design,	account. This process includes				
			para 6.32 of SSR-3 [1]	implicitly a graded approach				
			states that "The basis for	and an additional application				
			the safety classification of	of the graded approach on the				
			the structures, systems and	safety classification is not				
			components shall be stated	necessary.				
			and the design requirements					
			shall be applied in					
			accordance with their safety					
			elassification." The					
			application of design					
			requirements					
			commensurate with the					
			safety classification of an					
			SSC is the basis of a graded					
			approach in the design					
			process. Based on the					
			safety class appropriate					
			design requirements should					

			be assigned to meet para 6.32 of SSR 3 [1].				
14.	Germany 10-NUSSC	2.14	Specific recommendations on the use of a graded approach in the application of each safety requirement <u>of SSR-3 [1]</u> are provided in Sections 3–8, including on requirements to which a graded approach cannot be applied. Examples are given for the graded application of requirements for research reactors with a high, medium, or low potential hazard.	Clarification	X		
15.	France 2	2.12 - (b)	the safety, health, environmental, security, quality, <u>human-and-</u> <u>organizational-factor,</u> <u>societal</u> and economic objectives of the operating organization	Reference to requirement 4 of SSR-3 which contains human- and-organizational-factor, societal		X	GSR Part 2 requirement para is qouted.
16.	France 3	2.9 - (j)	"The site evaluation, including external hazards (natural, man-made and hazard combinations) associated with the site and the <u>vicinity of the research</u> reactor including proximity to population groups".	A list of external hazards would be beneficial to avoid oversights (in particular man- made hazards and combinations). The vicinity of the RR implies larger scope for categorizing the RR, proximity to population groups is not sufficient, environmental		X	Para from SSR-3 is quoted.

Section 3				stakes and industrial environment could impact classification			
17.	Germany 11-NUSSC	3.1	General requirements for the legal and regulatory infrastructure for facilities and activities are established in IAEA Safety Standards Series No. GSR Part 1 (Rev. 1), Governmental, Legal and Regulatory Framework for Safety [16], which includes ing-requirements	Wording	X		
18.	Korea 2 (KINS)	3.6/6-8	in IAEA Safety Standards Series No. GSG-12 , Organization, Management and Staffing of the Regulatory Body for Safety [19] and GSG-13 [17], respectively.	For consistency		Х	IAEA style of writing, GSG-12 is referred first time.
19.	Germany 12-NUSSC	3.8 (c)	Issue of <u>permits and</u> licences, <u>for the various</u> <u>stages;</u>	Further specification is needed. Compare also with para. 3.8. of SSG-22.	Х		
20.	Germany 13-NUSSC	3.9	The steps in the authorization process apply to all research reactors at all stages of their lifetime and may should apply to experiments and	Clarification	Х		

			modifications depending on their importance to safety				
21.	Germany 14-NUSSC	3.13	The use of complementary probabilistic safety assessment, as appropriate, which might be carried out to supplement deterministic safety analysis <u>if</u> <u>appropriate</u> (see Requirement 5 of SSR-3 [1]), is another element of the safety analysis report requirement that could vary in accordance with the potential hazard of the facility.	According to SSR-3 probabilistic safety assessment (PSA) are complementary to deterministic safety analyses. The PSA shall be performed where appropriate.	X		
Section 4							
22.	Germany 15-NUSSC	4.2 Line 18	There are elements of this requirement to which graded approach cannot be applied using a graded approach, for example, for the operating organization to have prime responsibility for the safety of the research reactor, and the requirement to develop and sustain a strong culture for safety.	Please put wording in line with SSR-3, the same for further paras. Please see General comment as well, for consistency within the document.		X	Please see resolution to Germany comment 2 (NUSSC).
23.	Germany 16-NUSSC	4.3 Line 5	In a facility with a low potential hazard , such as some subcritical	The term low hazard potential is more comprehensive and does not stipulate the idea that		X In a facility such	For completeness.

			assemblies, the requirement for sufficient staff could result in a small operating organization, with the necessary training to operate, maintain, and ensure the safety of the research reactor.			as some low potential hazard <u>research reactors,</u> <u>critical</u> and subcritical assemblies	
24.	Pakistan 1- NSGC (PAEC)	4.5	The requirement to establish and implement a safety policy cannot be applied using a graded approach. The safety policy is a central component of the management system for any nuclear facility , to ensure that all activities within the operating organization give safety the highest priority.	document for all nuclear facilities including NPP/RR and other nuclear facilities, it	X		
25.	Germany 17-NUSSC	4.6	Requirements for the management system for a research reactor facility are established in Requirement 4 of SSR-3 [1]. Paragraph 4.7 of SSR-3 [1] states that "The level of detail of the management system that is required for a particular research reactor or experiment shall be governed by the potential hazard of the reactor and	Further specification of the requirement is needed. Compare also with para. 4.5. of SSG-22.		X Requirements for the management system for a research reactor facility are established in Requirement 4 of SSR-3 [1]. Paragraph 4.7 of SSR-3 [1] states that "The level of detail of the management system that is required for a particular research	Requirement 7 and para 4.15 of GSR Part 2 is referred.

	the experiment".	reactor or experiment
	According to the para. 4.7.	shall be governed by
	of SSR-3 [1] the	the potential hazard of
	complexity of the	the reactor and the
	management system for a	experiment".
	particular research reactor	According to the para.
	and associated	4.7. of SSR-3 [1] the
	experimental facilities	complexity of the
	should be commensurate	management system
	with the potential hazard of	for a particular
	the reactor and the	research reactor and
	experimental facilities, and	associated
	the requirements of the	experimental facilities
	regulatory body.	should be
	Requirement for the	commensurate with the
	preparation and	potential hazard of the
	implementation of a graded	reactor and the
	management system is	experimental facilities,
	established in Requirement	and the requirements
	7 of GSR Part 2 [14], which	of the regulatory body.
	state that grading of the	Requirement for the
	application of management	preparation and
		implementation of a
	system requirements is	
	required to be applied to the	graded management
	products and activities of	system is established
	each process and that the	in Requirement 7 and
	grading is required to be	para 4.15 of GSR Part
	such as to deploy	2[14].
	appropriate resources, on	
	the basis of consideration	
	<u>of:</u>	
	—The safety significance	
	and complexity of each	
	activity;	
	—The hazards and the	
•		· · ·

			magnitude of the potential impact (risks) associatedwith the safety, health, environmental, security, quality and economic elements of each activity;—The consequences if an activity is carried out incorrectly.				
26.	Pakistan 2- NSGC (PAEC)	4.8	A procedure for a simple maintenance task on a component in a non-active system with low safety significance could be written by an experienced person and reviewed by maintenance supervisor.	The developing procedure by experienced member of the engineering personnel will limit the opportunities for maintainers. It is therefore proposed that it should remain generic.		X A procedure for a simple maintenance task on a component in a non-active system with low safety significance could be written by an experienced member of the <u>engineering</u> <u>operating</u> personnel and reviewed by a maintenance supervisor	Using terminology in compliance with SSR-3 para 7.59.
27.	Germany 18-NUSSC	4.11 Line 10	For a research reactor with a low potential hazard, the management system could consist of relatively few processes and procedures, and an audit of the management system could occur as part of the renewal of the	Some countries grant indefinite operational licenses, here the audit of the management system could be coupled to the periodic safety review	X		

28.	Pakistan 3- NSGC		authorization from the regulatory body <u>or the</u> periodic safety review. These requirements can be applied using a graded		X		
	(PAEC)	4.12	approach, for example, by taking the potential hazard of the research reactor into account when determining the frequency and scope of safety assessments (such as self-assessments, independent assessment and peer reviews) throughout the lifetime of the facility.	In post Fukushima scenario, corporate independent assessment of nuclear facilities is becoming industry practice. Therefore it may be including as part of self-assessment or separate. This is in addition to facilities own self-assessment.			
29.	Germany 19-NUSSC	4.14 Line 6	A minimum list of items that the reactor safety committee is required to review is provided in para 4.27 of SSR-3 [1] (see also paras <u>7.8 and</u> 7.9 of this Safety Guide).	Clarification	X		Relevant paras are referred (7.9 and 7.10).
Section 5							
30.	Germany 20-NUSSC	5.3 New issue	Paragraphs 4.1–4.5 of SSR- 1 [15] develop the basis for applying a graded approach to the various site related evaluations and decisions, commensurate with the radiological hazard of the research reactor. The main	Please add this important issue		X	The existing text 5.3 (g) already cover this issue. It is quotation from safety requirement and cannot be changed.

31.	Japan 1- NUSSC (NRA)	5.7.	factors to be considered in site evaluation are the following: (g) The potential for on-site and off-site consequences in the event of an accident. <u>In addition, the dispersion</u> <u>in air and water of</u> <u>radioactive material</u> <u>released from the nuclear</u> <u>installation in operational</u> <u>states and in accident</u> <u>conditions shall be assessed</u> <u>according to Requirement</u> <u>25 of SSR-1.</u> For the evaluation of hazards associated with human induced events in site evaluation for a research reactor, only <u>one</u> <u>intensity level</u> for each event is expected to be considered in the design basis. Recommendations on the screening and analysis of hazards associated with human induced events are provided in IAEA Safety Standards Series No. DS520, Hazards Associated with Human induced External Events in Site Evaluation for Nuclear	Clarification. "One intensity level" is unclear, as the preceeding wordings in the previous draft (step 8; see the below) was deleted in the step 11 draft. Furthermore, intensity level is not addressed in DS520. "5.8. Human induced events cannot be included in site evaluation using the same approach as other external events. <u>Because human</u> <u>induced events are discrete</u> <u>and are not characterised by a</u> <u>range of frequency and</u> severity, only one intensity	X		
				range of frequency and			

Section 6				basis. Recommendations on site survey and site selection ,"		
Section o						
32.	Germany 21-NUSSC	6.2 Line 7	The use of a graded approach should result in design features that fully meet this requirement and are appropriate for the potential hazard from the research reactor. <u>Graded</u> approach cannot be applied to two elements of this requirement, which are shielding against radiation and—control <u>of planned</u> radioactive <u>discharges</u> during normal operation. The design of shielding for protection from radiation should be based <u>on the</u> radiation protection limit values, which are not subject of graded approach. The control of radioactive discharges (see Requirements 59 and 64 of SSR-3 [1]) is necessary to protect the public and the environment and to meet regulatory requirements, and this requirement cannot be applied using a graded	should be based on the dose limits / dose constraints and on magnitude of the radiation hazard. The necessary shielding is the result of the design process and not an	X	Justification is technically correct and addressed in existing text para 6.3 c (ii).

33.	Germany 22-NUSSC	6.3 (a) New issue	approach is not subject of graded approach as well.(ii) Some research reactors may have inherent self- limiting power levels and/or systems that	Please introduce additional bullet. This include a very useful information, which is missing in para. 6.3. (a).	X		
			physically limit the amount of positive reactivity that can be inserted into the core. This property can be used for graded approach in the design of the shutdown system.	Compare also with para. 6.6. of SSG-22.			
34.	Germany 23-NUSSC	6.3 (b) (i)	For some research reactors (typically with a medium or high potential hazard and higher power) a forced convection cooling system to remove fission heat, could be necessary to meet the acceptance criteria for the design, in all operating conditions and accident conditions, whereas for research reactors with less demanding cooling needs , such as some critical and subcritical assemblies, fission heat could be generated at sufficiently low levels that it could be adequately removed without the need for an engineered system.	The term "with less demanding cooling needs" is more com- prehensive and does not stipulate the idea that critical and subcritical assemblies are per se of a low hazard potential (which they are not)		X	It is preferred to leave it as it is for clarification the text 'some' is already used.

35.	Germany 24-NUSSC	6.3 (c) Step 11	A graded approach can be used in the application of some elements of Requirement 7 of SSR-3 [1] for the main safety functions, as follows: (c) Confinement of radioactive material, shielding against radiation and control of planned radioactive releases, as well as limitation of accidental radioactive releases: (ii) <u>Graded approach cannot be applied to the</u> <u>requirement of shielding.</u> The design of shielding against radiation should be based <u>on the dose limits /</u> <u>dose constraints and</u> on the magnitude of the radiation hazard calculated for each location in the research reactor where actions by operating personnel are necessary in operational states and in accident conditions, and for	The design of shielding for protection from radiation should be based on the dose limits / dose constraints and on magnitude of the radiation hazard. The necessary shielding is the result of the design process and not an application of the graded approach.		X	Please see resolution to Germany comment 21.
			operating personnel are necessary in operational states and in accident				

			the hazard can then be included in the design.				
36.	Pakistan 4- NSGC (PAEC)	6.3 (b) (iii)	The scope and necessity of coolant systems (see Requirement 47 of SSR-3 [1]), including emergency core cooling systems to make up the inventory of reactor coolant in the event of a loss of coolant accident	'make up' is the appropriate and relevant term instead of 'replace', so it is proposed to be used.	X		
37.	Germany 25-NUSSC	6.4 Line 5	Specific design provisions, or SSCs included in the design to protect reactor personnel and the public from radiation (e.g. an emergency filtration system) could be larger and/or more complex for a research reactor with a high <u>er</u> potential hazard.	Clarification	Х		
38.	Germany 26-NUSSC	6.6 Line 4	The quantity of information that would be adequate to decommission a research reactor with a high <u>er</u> potential hazard should be larger in scope than for research reactors with a lower potential hazard (e.g. some low power reactors, critical assemblies, subcritical assemblies).	Clarification. See also general comment.		X	Please see resolution to Germany comment 23.

39.	Germany 27-NUSSC	6.8 - 6.9	6.8. Defence in depth is an important design principle that is required for all research reactors regardless of potential hazard.; However, this requirement should be applied using a graded approach by recognizing that for low power research reactors, or eritical and subcritical assemblies, accidents which need mitigation by the fourth or fifth level of defence in depth (see para. 2.12 of SSR 3 [1]) may not be physically possible. 6.9. For a facility with a low or medium potential hazard, the first four levels of defence in depth should be included in the design. The design capability of the engineered safety features can use a graded approach, for example the decay heat load could be smaller, and typically a smaller fission product inventory needs to be confined or mitigated than for a research reactor with a high potential hazard.	Defence in depth is important and shall be applied regardless of the hazard potential of a research reactor. To clarify this issue, we proposed to combine 6.8 and 6.9.		X Defence in depth is an important design principle that is required for all research reactors regardless of the potential hazard. however, it should be recognized that for low power research reactors, critical assemblies and subcritical assemblies, the types of accident that the fourth or fifth level of defence in depth are intended to cope with might not be physically possible. For a facility with a low or medium potential hazard, The first four levels of defence in depth should be included in the design. The		For clarity and completness.
-----	---------------------	-----------	--	--	--	---	--	---------------------------------

the engineered
safety features can
use a graded
approach, for
example the decay
heat load could be
smaller, and
typically a smaller
fission product
inventory needs to
be confined or
mitigated than for a
research reactor
with a high
potential hazard.
however, It should
be recognized that
for low power
research reactors,
critical assemblies
and subcritical
assemblies, the
types of accident
that the fourth or
fifth level of
defence in depth
are intended to
cope with might not
be physically
possible.

40.	Germany	6.9	For a facility with a low or	Please remove this to para 6.8.	X	Please see
	28-NUSSC		medium potential hazard,	1		resolution to
			the first four levels of	SSR-3 requires consideration		Germany comment
			defence in depth should be	of design extension condition		27.
			included in the design. The	for all research reactors. The		27.
			design capability of the	requirement cannot be waved,		
			engineered safety features	only the way how it is fulfilled		
			can use a graded approach,	should be graded.		
			for example the decay heat	Even if accidents with a core		
			load could be smaller, and	damage may practically be		
			typically a smaller fission	excluded, mitigation of any		
			product inventory needs to	unnecessary radiological		
			be confined or mitigated	exposure to people and		
			than for a research reactor	environment should be		
			with a high potential	applied. For this reason, a		
			hazard.	general statement that level		
				five of defence in depth is not		
				applicable for research reactors		
				with lower potential hazard		
				may be misinterpreted. In		
				addition, to our understanding		
				level 5 of DiD is not a further		
				escalation of level 4 of DiD,		
				but may also be necessary,		
				depending on the research		
				reactor, starting from level 3 of		
				DiD. This means, level 5 of		
				DiD has to be seen more		
				parallel to levels 3 and 4 of		
				DiD.		
41.	Germany	6.16	For a research reactor	Clarification.	Х	Please see
	29-NUSSC	Line 15	with a low potential hazard,	See also general comment.	For a research reactor	resolution to
			such as a subcritical		with a low potential	Germany comment
			assembly, there might not		hazard, such as some	23.
			be a significant hazard from		critical and subcritical	

			activation products			accompliant there	
			activation products.			assemblies, there	
						might not be a	
						significant hazard from	
						activation products.	
42.	Germany	6.21	Although it is not	Clarification	Х		
	30-NUSSC	Line 2	possible to use graded				
			<u>approach to</u> apply this				
			requirement using a graded				
			approach, the design basis				
			for items important to				
			safety in a facility with a				
			low potential hazard				
			research reactor, critical				
			assembly or subcritical				
			assembly with a low				
			potential hazard, is				
			typically less complex, and				
			requires less analysis to				
			demonstrate that its				
			performance meets				
			acceptance criteria, than in				
			a facility with a high				
			potential hazard.				
43.	Japan 2-	6.23. /4	A comprehensive set of	Wording/Editorial.	Х		
	NÛSSC		postulated initiating events	C C			
	(NRA)		is always required for the				
			safety analysis of a research				
			reactor regardless of				
			potential hazard, and are				
			required to be identified on				
			the basis of engineering				
			judgement, operating				
			experience feedback.				
			operating experience				
			feedback (including				
			iccuback (including				

			operating operational experience from similar facilities) and deterministic assessment, complemented, where appropriate and available, by probabilistic methods: see para. 6.36 of SSR-3 [1].				
44.	Germany 2- WASSC (BMU/GR S-BASE)	6.23	A comprehensive set of postulated initiating events is always required for the safety analysis of a research reactor regardless of potential hazard, and are required to be identified on the basis of engineering judgement, operating experience feedback . operating experience feedback (including operational experience from similar facilities) and deterministic assessment, complemented, where appropriate and available, by probabilistic methods:	Wording	X		
45.	Pakistan 5- NSGC (PAEC)	6.31-6.32	Addition of para regarding procedures / guidelines for Design Extension Conditions <u>It is proposed that</u> <u>paragraph(s) addressing</u> <u>guidelines / procedures for</u> <u>handling design extension</u>	EOP are used in design basis accidents to control accident and mitigate consequence. However, in case these are not controlled and design extension conditions approaches, the additional text / para may be drafted /		X	Not the scope of this Safety Guide. It is addressed in other Safety Guide i.e. SSG-20.

			<u>conditions be added in the</u> <u>section / document to</u> <u>address the guidance for</u> <u>handling design extension</u> <u>conditions.</u>	included aiming to provide the required guidelines / procedures to deal with the design extension conditions.		
46.	Germany 31-NUSSC	6.32 Line 4	In a research reactor with a low potential hazard such as a subcritical assembly with few SSCs important to safety, accidental criticality could be the only event included in the analysis of design extension conditions.	Clarification. See also general comment.	X In a research reactor with a low potential hazard such as <u>some critical and</u> subcritical assemblies with few SSCs important to safety, accidental criticality could be the only event included in the analysis of design extension conditions.	Please see resolution to Germany comment 23.
47.	Germany 32-NUSSC	6.35 Line 5	For a research reactor with a low potential hazard such as a critical assembly where the irradiated fuel can be safely stored in air, the safety analysis may demonstrate that no engineered safety feature is necessary to maintain fuel integrity in response to a loss of coolant accident.	Clarification. See also general comment.	X For a research reactor with a low potential hazard such as <u>some</u> critical assemblies where the irradiated fuel can be safely stored in air, the safety analysis may demonstrate that no engineered safety feature is necessary to maintain fuel integrity in response to a loss of coolant accident.	Added 'some' as in resolution to Germany comment 23.

48.	Korea 3 (KINS)	6.39/9	Recommendations on the applicationin paras 6.40-6.48 6.47	Paras. 6.40-6.47 correspond to the principles (a)-(e) in the para. 6.39		Х	Relevant paras are referred.
49.	Germany 33-NUSSC	6.41	<u>Graded approach cannot be</u> <u>applied to the This</u> requirement that no single failure <u>should</u> prevents SSCs in a safety group from performing a main safety function , cannot be applied using a graded approach. For all research reactors, the groups of equipment delivering any one of the main safety functions are required to be designed with appropriate redundancy, independence and diversity to ensure high reliability. <u>However, the</u> <u>required degree of</u> <u>redundancy can be graded</u> <u>and may be lower for a low</u> <u>hazard potential.</u>	The degree of redundancy may be lower for a low potential hazard facility than for a high potential hazard facility.		X Graded approach cannot be applied to the This -requirement that no single failure should prevent s SSCs in a safety group from performing a main safety function , cannot be applied using a graded approach. For all research reactors, the groups of equipment delivering any one of the main safety functions are required to be designed with appropriate redundancy, independence and diversity to ensure high reliability. However, the required degree of redundancy can be graded and may be lower for a low <u>potential hazard</u> facility.	For completeness.
50.	Germany 3- WASSC (BMU/GR	6.55	For a research reactor with a high potential hazard and a large number of	The word complex doesn't sound very well with the design of escape routes.	Х		

	S-BASE)		operating personnel, the design of escape routes could be relatively complex <u>versatile</u> and the location where personnel assemble could need specific design features to protect personnel from hazards during an emergency.				
51.	Korea 4 (KINS)	6.58/5	(a)The need for disposal facilities will also be likely to be minimal.	Reflect the previous resolution table for No. 130	Х		
52.	Germany 34-NUSSC	6.61	Paragraph 6.94 of SSR-3 [1] requires that adequate provision is made for shielding, ventilation, filtration and decay systems in the design of a research reactor. The design of ventilation systems can use a graded approach based on the potential radiological hazard and the necessary occupancy of the room in operational states and in accident conditions. For a research reactor with a low or medium potential hazard, the number of locations within the facility requiring ventilation systems to mitigate radiological hazards is typically fewer than in a research reactor with a high	The design of shielding for protection from radiation should be based on the dose limits / dose constraints and on magnitude of the radiation hazard. The necessary shielding is the result of the design process and not an application of the graded approach.	X		

			potential hazard. Similarly, the design calculations and features necessary to ensure adequate shielding of SSCs with high radiation fields, should be fewer and less complex.				
53.	Germany 35-NUSSC	6.62	Design provisions to monitor and control access to SSCs with imposing radiological hazards to workers can be applied using a graded approach.	Clarification	Х		
54.	Germany 36-NUSSC	6.65 Line 4	In all cases, the analysis of the human– machine interface should consider all normal operational states, postulated initiating events, design basis accidents and selected, <u>but</u> <u>enveloping</u> design extension conditions, to ensure that combinations of alarms and indications in the control room are unambiguous.	Addition in order to make sure that all alarms and signal are covered.	X		
55.	Germany 37-NUSSC	6.67	(b) New utilization and modification projects, including experiments that have a <u>significant effect on</u> major significance for safety	Clarification		X "including experiments that have a major <u>or</u> <u>significant effect on</u> safety"	For consistency with SSG-24.
56.	Germany 38-NUSSC	6.68 Line 7	The analysis of the modification should be	Clarification	Х		

		and Line 12	reviewed by the <u>reactor</u> safety committee and the regulatory body This analysis should be reviewed by the <u>reactor</u> safety committee and	The same for para. 7.10.		
			approved by the reactor manager before the design process proceeds.			
57.	Germany 39-NUSSC	6.75	Research reactor designs normally include provisions to ensure safety during shutdown and typically these provisions can be used during a extended long shutdown. For all SSCs that are important to safety, and which could suffer degradation during the extended long shutdown period, provision should be made for a preservation programme that includes inspecting, testing, maintaining, dismounting and/or disassembling SSCs, as appropriate, during the shutdown period. As an alternative to implementing a preservation programme for installed equipment, it may be more practical to remove equipment; this decision is usually linked to the future of the research	This para is dealing with a long shutdown. Extended shutdown is approached in paras 7.90 – 7.92 of current Guide.	X	For consistency text in para 7.90 is revised accordingly.

58.	Germany 40-NUSSC	6.76 Line 10	reactor. All modifications made to a research reactor in extended long shutdown are also subject to Requirements 36 and 83 of SSR-3 [1], including review, assessment and approval by the regulatory body prior to implementation, when appropriate. For a research reactor with a low potential hazard, such as a subcritical assembly with irradiated fuel containing a low fission product inventory that does not need shielding or water cooling,	Clarification. See also general comment.		X For a research reactor with a low potential hazard, such as <u>some critical and</u> subcritical assemblies with irradiated fuel containing a low fission product inventory that does not need shielding or water cooling,		Please see resolution to Germany comment 23.
59.	Germany 41-NUSSC	6.84	(c) The use of conservative methods and criteria is a means of simplifying the safety analysis.	Wording "is a mean of"	Х			
60.	Germany 42-NUSSC	6.87	A graded approach can <u>not</u> be used for the design of shielding throughout the research reactor, based on the number of rooms where <u>SSCs could be a source of</u> radiation in operational states or in accident	The design of shielding for protection from radiation should be based on the dose limits / dose constraints and on magnitude of the radiation hazard. The necessary shielding is the result of the design process and not an			X	The graded approach is applicable to requirement, the examples in the text are kept for explanation.

eonditions, and on the characteristics of the radiation risk. In accordance with Requirement 42 of SSR-3 [1], the buildings and structures are required to be designed to maintain radiation levels as low as application of the graded approach.	
radiation risk. In accordance with Requirement 42 of SSR-3 [1], the buildings and structures are required to be designed to maintain	
accordance with Requirement 42 of SSR-3 [1], the buildings and structures are required to be designed to maintain	
Requirement 42 of SSR-3 [1], the buildings and structures are required to be designed to maintain	
[1], the buildings and structures are required to be designed to maintain	
structures are required to be designed to maintain	
designed to maintain	
radiation levels as low as	1
reasonably achievable. For	
a research reactor with a	
high potential hazard, a	
larger number of rooms	
where equipment	
associated with reactor	
operation, isotope	
production, experimental	
devices or radioactive	ļ
waste storage could need to	ļ
be provided with shielding	
as part of the building	ļ
design. In a facility with a	ļ
lower potential hazard, with	ļ
a small number of rooms	ļ
where a radiation risk is	ļ
present, the design of	
structures to provide adequate shielding could be	
less complex.	
61. Germany 6.93 For a research reactor with Design feature, in singular, is X	
43-NUSSC a high potential hazard, more suitable, as monitoring of	
monitoring of parameters parameters is a design feature	ļ
such as temperature, here.	ļ
flow and radiation levels in	
each fuel channel, could be	

62.	Germany 44-NUSSC	6.103	design features that ensure an automatic response from the reactor protection system, or an action by operating personnel in response to an alarm. Such design features could be necessary The requirement to monitor and control the properties of the reactor coolant (e.g. the pH and conductivity: see para. 6.162 of SSR-3	Already covered by para. 1.1		X The requirement to monitor and control the properties of the reactor coolant (e.g.	Please see resolution to Germany comment 23.
			[1]) is applicable to all water-cooled research reactors of any power level including subcritical assemblies, to ensure that water conditions do not degrade reactor SSCs important to safety, especially boundaries that prevent the release of fission products, such as the fuel cladding.			the pH and conductivity: see para. 6.162 of SSR-3 [1]) is applicable to all water- cooled research reactors of any power level including <u>some</u> subcritical assemblies, to ensure that water conditions do not degrade reactor SSCs important to safety, especially boundaries that prevent the release of fission products, such as the fuel cladding.	
63.	Iran 1- EPReSC (INRA)	Paragraph 6.105/ First line	"The need for an emergency core cooling system should be defined in the design stage"	Is there any reason for omitting "core"?	Х		

64.	Germany 45-NUSSC	6.105 Line 8	For a facility with a low potential hazard, such as some subcritical assemblies, where the irradiated fuel is normally stored in dry conditions, safety analysis could demonstrate that no emergency core cooling system is necessary to mitigate the consequences of a loss of coolant accident.	Deletion to avoid a predetermination on a specific design. It is not clear why the conditions of the irradiated fuel influence the emergency core cooling needs.		For a facility with a low potential hazard, such as some subcritical assemblies, where the irradiated fuel is normally stored in dry conditions, safety analysis could demonstrate that no emergency core cooling system is necessary to mitigate the consequences of a loss of coolant accident.	Examples retained as 'some' is used. Please see resolution to Germany comment 23.
65.	Germany 46-NUSSC	6.109 Line 5	This measurement is typically not necessary in a <u>research reactor that does</u> <u>not need an active water</u> <u>cooling</u> . critical assembly or a subcritical assembly	Here, the important aspect is the forced cooling of the core. Many water cooled research reactors do not require an active water cooling and hence do not require to measure the pressure across the core. Deletion to avoid a predetermination on a specific design.	X		
66.	Germany 47-NUSSC	6.111 Line 5	For research reactors that operate for only a few hours per week or less frequently , such as some eritical assemblies, a lower level, i.e. two channel (one- out-of-two), redundancy can be applied, thus reducing the complexity of the design and of operation ,	 Statement is unclear. There are also smaller research reactors that operate only few hours a week. Giving solely critical assemblies as an example is misleading. See also general comment. Costs must not be considered as a factor for 		X For research reactors that operate for only a few hours per week or less frequently, such as some critical assemblies, a lower level, i.e. two channel (one-out-of-two),	For completeness the text deleted and examples are kept for additional clarification.

			as well as costs .	grading safety requirements. The safety of research reactor have to be assured due to the design and operation.		redundancy can be applied, thus reducing the complexity of the design and of operation , as well as costs .	
67.	Germany 48-NUSSC	6.113	A graded approach can be applied to the reactor protection system, based on the potential hazard of the facility and the number <u>kind</u> of initiating events identified in the safety analysis <u>(based on</u> <u>considerations of e.g.</u> <u>potential consequences of</u> <u>the hazard, time constrains,</u> <u>mitigating passive safety</u> <u>features).</u>	The number of events is no relevant argument for a graded approach.	X		
68.	Germany 49-NUSSC	6.113 A New para	Regardless of the hazard potential of a research reactor, the reactor protection system should be designed in such a way that neither a single failure nor a common cause failure will prevent execution of mandatory safety functions. Consequently, graded approach cannot be applied to paras. 6.176, 6.177 and 6.181 of SSR-3 [1].	Paras 6.176, 6.177 and 6.181 of SSR-3 includes important requirements related to the application of the single failure event, consideration of common cause failures or diversity for computer-based systems. To ensure the high reliability of the reactor protection system these three paras. are important and it should be clearly stated that a grading is not permitted.		X <u>Regardless of the</u> <u>hazard potential of a</u> <u>research reactor, the</u> <u>reactor protection</u> <u>system should be</u> <u>designed in such a way</u> <u>that neither a single</u> <u>failure nor a common</u> <u>cause failure will</u> <u>prevent exceution of</u> <u>mandatory meeting</u> <u>required safety</u> functions.	'Mandatory' is not defined. The remaining text is covered by paras 6.40-6.41.

69.	Pakistan 6- NSGC (PAEC)	6.121	Requirements for emergency response facilities on the site of a research reactor are established in Requirement 55 of SSR-3 [1]. Accordingly, emergency response system should be established commensurate with the potential hazards due to internal and external events.	Proposed new text will describe the general requirement of EPR system.		X	Already addressed in the text of same para.
70.	Germany 50-NUSSC	6.124	For a research reactor with a high potential hazard, where forced cooling is needed to remove decay heat, the level of redundancy and the number of separate channels in the emergency power supply system should be based on the results of safety analysis, including the frequency of -abnormal occurrences and accident conditions for which emergency power is needed.	For a research reactor with a high potential hazard the design of the electrical power supply system should only be based on the results of safety analysis. In the safety analysis the frequency of abnormal occurrences and accident conditions is already suitably considered.	X		
Section 7							
71.	Japan 3- NUSSC (NRA)	7.13.	A graded approach could also be applied to the education level and <u>operating operational</u>	Wording/Editorial	Х		

			experience of trainees, the content and duration of initial and continuing training, training materials, the assessment of completed training, and to qualification, which can depend on the complexity of the research reactor design, as well as the potential hazard, planned utilization, and available infrastructure.				
72.	Germany 51-NUSSC	7.17.	Operational limits and conditions are based on the reactor design and on the information from the safety analysis report; consequently, a graded approach <u>should</u> will have been used in the application 	Clarification	Х		
73.	Germany 52-NUSSC	7.21 Line 3	For example, in a low power reactor, the coolant outlet temperature could be selected as the parameter relating to the fuel temperature for which a safety system setting is defined, while in a higher power reactor, to prevent the safety limits from being approached, a complex system of variables should have defined safety system	Please add this important issue		X In addition two safety parameters e.g. pressure and flow may also be needed for detection of some design basis incidents.	For technical precision and consistency.

74.	Germany	7.31	settings, such as the coolant outlet temperature, the inlet temperature, the coolant flow rate, the differential pressure across the core and the primary pump discharge pressure, as well as parameters from experimental facilities. <u>In</u> addition, two different actuation criteria (e.g. pressure and flow rate) may also be required with regard to the detection of incidents For example, research	Clarification. Here, the	X		
74.	53-NUSSC	Line 4	reactors, <u>critical assemblies</u> or <u>subcritical assemblies</u> <u>with a</u> low potential hazard of <u>and subcritical facilities</u> typically have fewer personnel in the operating group and less or no expertise on power rise tests and operation at high power levels	mentioning of critical and subcritical assemblies makes sense as power rise tests and high-power operation are given as examples. Addition of critical assemblies for completion.	Λ		
75.	Germany 54-NUSSC	7.32	Stage C of commissioning (power ascension tests and power tests up to rated full power as defined in para 3.17 and paras 5.30–5.37 of DS509A [2]) is not necessary for <u>critical and</u> subcritical assemblies <u>with</u> <u>a low potential hazard</u> , and the scope, extent, and	Clarification. Stage C can also be graded for critical and subcritical assemblies with a low potential hazard.		X Stage C of commissioning (power ascension tests and power tests up to rated full power as defined in para 3.17 and paras 5.30–5.37 of DS509A [2]) is not necessary for some critical and	Also added 'some'. Please see resolution to Germany comment 23.

			duration of Stage C is much less for low power research reactors (i.e., that are typically of low potential hazard) compared to those of higher power levels.			subcritical assemblies with a low potential <u>hazard</u> , and the scope, extent, and duration of Stage C is much less for low power research reactors (i.e., that are typically of low potential hazard) compared to those of higher power levels.	
76.	Germany 55-NUSSC	7.34	The principles applied in commissioning for the initial approach to criticality, reactivity device calibrations, neutron flux measurements, determination of core excess reactivity and shutdown margins, power raising tests and testing of the containment system or other means of confinement are similar for all research reactors regardless of potential hazard and hence cannot be subject to a graded approach	For clarity.	X		
77.	Germany 56-NUSSC	7.39 a) New footnote	(a) The procedure for regeneration of an ion exchange system for producing demineralized water for a storage tank will be of low safety significance ^x and will	Please add this important issue. We suggest here as a footnote	X		Addressed in the text instead of footnote.

	1		involve meture and simple				
			involve mature and simple				
			technology. Consequently,				
			the operating procedure				
			governing this application				
			can be simplified.				
			<u>^x In some cases, the ion</u>				
			exchange resins can be				
			dried. Radionuclides may				
			be released during the				
			drying process. There are				
			limits to be observed for				
			radioactive discharges with				
			the air. Therefore, the				
			safety significance is not to				
			be regarded as low.				
78.	Germany	7.41	In a research reactor	Clarification	Х		
/ 01	57-NUSSC	Line 5	with a high potential				
	0, 1,0000	2	hazard, the supplementary				
			control room could should				
			include more				
			monitoring and control				
			equipment than a shutdown				
			panel				
79.	Germany	7.42	Requirements for material	Housekeeping and cleanliness	Х		
19.	58-NUSSC	1.42	conditions and		Λ		
	JO-INUSSC						
			housekeeping for research	irrespectively of the hazard			
			reactors are established in	potential. It contributes to			
			Requirement 76 of SSR-3	safety working conditions and			
			[1]. High standards of	is also important for			
			material conditions and	occupational health and safety.			
			housekeeping, including	In addition, even research			
			cleanliness, accessibility,	reactors with a low hazard			
			adequate lighting,	potential are operated in			
			appropriate storage	radiation-controlled areas			

			conditions, and identification and labelling of safety equipment are required regardless of the potential hazard of the research reactor. A research reactor of a low potential hazard and fewer SSCs important to safety, should involve less effort to maintain a high standard of housekeeping and eleanliness compared to those facilities of medium and high potential hazards with a larger number of SSCs.	requiring also organizational measures to avoid e.g. contamination and activation, for example by avoiding generation of unnecessary radioactive waste in such areas		
80.	Germany 59-NUSSC	7.49	A balance should be sought between the improvement in the detection of faults that is gained from more frequent testing, against the risk that testing could be performed incorrectly and leave the SSC in a degraded state, the degradation of SSCs as a result of the testing activity, and the reduced availability of the SSC while testing is performed. This consideration also applies for periodic maintenance. The frequency of replacement of SSCs	While this paragraph provides useful information on the establishment of testing intervals no information on grading is provided. It is recommended to move this paragraph to DS509B. Para 7.42 of current Guide contains already a link to this guide for more recommendations on maintenance, periodic testing and inspection.	X A balance should be sought between the improvement in the detection of faults that is gained from more frequent testing, against the risk that testing could be performed incorrectly and leave the SSC in a degraded state, the degradation of SSCs as a result of the testing activity, and the reduced availability of the SSC while testing is performed. This	To make text consistent to apply graded approach.

			subject to ageing degradation (e.g. due to high radiation levels) can be based on the feedback of operating experience, including that from other reactors, and on the basis of the results of research and development.		consideration also applies for periodic maintenance. The frequency of <u>periodic</u> maintenance may also depend on potential hazards for example replacement <u>frequency</u> of SSCs is subject to ageing degradation (e.g. due to level of high radiation hazards levels). can be based on the feedback of operating experience, including that from other reactors, and on the basis of the results of research and development.	
81.	Germany 60-NUSSC	7.50	The period for which an SSC is permitted to be out of service while reactor operation continues is usually stated in the operational limits and conditions for the research reactor and can be based on the availability requirement for the SSC from the safety analysis. For example, outage times of any duration might not be acceptable for automatic shutdown systems, while	While this paragraph provides useful information on the duration of non-availabilities of SSC no information on grading is provided. It is recommended to move this paragraph to DS509B. Para 7.42 of current Guide contains already a link to this guide for more recommendations on maintenance, periodic testing and inspection.	X The period for which an SSC is permitted to be out of service while reactor operation continues is usually stated in the operational limits and conditions for the research reactor and can be based on the availability requirement for the SSC from the safety analysis. <u>Additional</u>	Text retained for useful information. For further guidance referred DS509B.

82.	Germany	7.52	outage times of up to several days might be acceptable for other systems, with appropriate compensatory measures (e.g. for a purification system monitoring the primary coolant pH, the system could be unavailable for several days, provided that pH measurements are taken manually each shift). The allowed outage time should depend on the extent to which safety is impacted, or the case of applying compensatory measures.	While this paragraph provides	information is provided in DS509B.For example, outage times of any duration might not be acceptable for automatic shutdown systems, while outage times of up to several days might be acceptable for other systems, with appropriate compensatory measures (e.g. for a purification system monitoring the primary coolant pH, the system could be unavailable for several days, provided that pH measurements are taken manually each shift). The allowed outage time should depend on the extent to which safety is impacted, or the case of applying compensatory measures.	X	Graded approach is
	61-NUSSC		periodic testing and inspection activities are highly specialized and	useful information on specialized maintenance, periodic testing and			applicable to resources.

-						1	
			involve complex and	inspections of SSC no			
			sophisticated techniques:	information on grading is			
			these activities are more	provided. It is recommended to			
			likely to be necessary in	move this paragraph to			
			more complex research	DS509B. Para 7.42 of current			
			reactor designs. Such	Guide contains already a link			
			activities are often	to this guide for more			
			performed by contracted	recommendations on			
			experts external to the	maintenance, periodic testing			
			operating organization for	and inspection.			
			the research reactor. Such	T. T			
			outsourcing should be				
			carefully considered by the				
			operating organization to				
			ensure that external support				
			is secured and that				
			resources will be available				
			throughout the operating				
			lifetime of the research				
			reactor. Recommendations				
			on the use of external				
			contractors for the				
			performance of				
			maintenance, periodic				
			testing and inspection are				
			provided in DS509B [3].				
83.	Germany	7.55	The safety significance of	Please reformulate. Otherwise,	Х		
05.	62-NUSSC	1.55	Changes to research	text is contradictory.	11		
	02 110550		reactor core management	text is contradictory.			
			and fuel handling				
			procedures should be				
			determined are				
			modifications of major				
			safety significance.				
			DS510B [11] provides			l	

			trained personnel. A fire in an administrative area, with a low safety consequence identified in the safety analysis, could be mitigated by the deployment of hand-held fire extinguishers and the actions of firefighting personnel.			
85.	Iran 2- EPReSC (INRA)	Paragraph 7.66/ Bullet c	"(c) The identification and classification of the hazard emergency in order to declare the applicable emergency class."	"Classification of the hazard" is not clear. Does it mean "classification of the emergency" or does it mean "assess the hazard"?	X The identification of <u>hazard</u> and <u>emergency</u> classification of the hazard .	For clarity.
86.	Iran 3- EPReSC (INRA)	Paragraph 7.66/Bullet F/First and second line	"The number and type of external organizations (e.g. police, fire fighting services, ambulance services and medical facilities) The emergency services that are part of to should be involved in the emergency response"	In GSR Part 7, there is another term for "external organizations" that are involved in emergency response and its definition is included in IAEA Safety Glossary too. It is suggested to replace "external organizations" with the term "emergency services" in this paragraph with the following definition: " emergency services The local off-site response organizations that are generally available and that perform emergency response functions. These may include	X The number and type of emergency services (e.g. police fire fighting services, ambulance service and medical facilities) that are part of to the emergency response, the emergency response training"	As per IAEA glossary.

				police, firefighters and rescue brigades, ambulance services, and control teams for hazardous materials." Also it is suggested to include the abovementioned definition as the footnote.				
87.	Iran 4- EPReSC (INRA)	Paragraph 7.66/Bullet F/Second line	"that are part of to the emergency response, the emergency response"	Editorial Comment (if not accepting the comment no.3)		Х		Please see resolution to Iran comment 3.
88.	Japan 1- EPReSC (NRA)	7.66 (b)	 (b) The size of <u>the</u> <u>emergency</u> <u>planning</u> <u>zones</u>. Delete footnote 6. 	It does not necessarily need to be limited to the urgent protective action planning zone. Reactors with power levels greater than 100 MW(t h) are classified as Category I, based on GS-G-2.1.	Х			
89.	Germany 64-NUSSC	7.82 Line 6	The operating organization should use safety assessments to inform the design of	Safety assessments in plural is more suitable here	Х			
90.	Pakistan 7- NSGC (PAEC)	7.85-7.89	Addition of new Paras may be considered regarding obsolescence of equipment and component especially I&C instrumentation in RR under ageing management or other section.	Obsolescence of equipment / component especially in I&C instrumentation is important concern in nuclear industry. So a para may be added to sensitize the designers, vendors and operating organizations to address this issue for long term safe operation of RR.			X	Already covered in SSG-10.

91.	Pakistan 8- NSGC (PAEC)	7.85-7.89	management for long term	Long term operation or extend operation beyond designed life has not been discussed in the		X	Long term operation and beyond design life is not covered as it is covered through ageing management and periodic safety reviews.
Section 8 No comme	nt						
Section 9 No comme	nt						
References No comme	nt						